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Having ended the previous entry in these NOTES with an 
announcement that I would “discuss developmental mathematics as 
embodied in the Arithmetic-Basic Algebra-Differential Calculus 
sequence”, I found myself somewhat at a loss as to exactly how to 
resume matters.
Fortunately, being known at my school as a militant, radical fault-finder of Developmental 
Mathematics courses as currently practiced, and therefore a royal pain, I was recently asked 
by a presumably sick and tired administrator how I would specify a program intended for the 
kind of students currently enrolling into Developmental Algebra. Obliging as ever in such 
cases, I wrote a few pages to sketch a program that would bring these students, in three four-
credit semesters and with an acceptable success rate, to the level achieved in Calculus I 
(Differential) and to explain what it is that would make such a program work.

What will ensue at my school is anyone’s guess but it seemed to me that I might as well 
publish here (a slightly edited version of) that sketch as it might be of some small use to 
someone out there.

NOTE: So far, I have not been able to convert the formulas written below in LaTeX into 
HTML but I am still trying. In the meantime, I apologize.

Description Of The Sequence

The most important part of such a program is of course the contents of the three courses in the 
sequence and, most especially, their architecture. One possibility would be for the sequence to 
consist of:

1. An Arithmetic-Algebra course, to be discussed at some length below, specially and 
specifically designed to serve as an introduction to:

2. An Algebraic Functions course dealing with their introduction, algebraic discussion 
and differential calculus,

3. A Transcendental Functions course dealing with their introduction, algebraic 
discussion and differential calculus.

Of course, one reason for this architecture is that it is that of the two courses, Differential 
Calculus I and Differential Calculus II, that were originally specified, designed and 
experimented with under the terms of a 1988 NSF grant as an alternative to the conventional 
sequence, Precalculus I, Precalculus II and Calculus I (Differential). The 1992 report of the 
school’s Office of Institutional Research said in part:

“Of those attempting the first course in each sequence, 12.5% finished the [conventional three 
semester 10 hour] sequence while 48.3% finished the [integrated two semester 8-hour] 



sequence, revealing a definite association between the [integrated two semester 8 hour ] 
sequence and completion (χ2 (1) = 82.14, p < .001).”

The report also said that the passing rates in Calculus II (Integral) for the students coming 
from the above two sequences were almost identical but that this was not significant because 
most students did not continue into Calculus II (Integral).

However, for reasons that may or may not be obscure, the integrated sequence all but died out. 
(This is of course what happened to most, if not all, the courses and textbooks developed under 
the NSF grant program. In particular, this was the eventual fate of the book developed at 
Harvard under, if memory serves, a one and a quarter million dollars NSF grant.)

The approach used in Differential Calculus I and Differential Calculus II to bypass a lot of 
the usual stumbling blocks on the and to provide the students with a continuous and sustained 
conceptual development is due to Lagrange, one of the preeminent nineteenth century 
mathematicians, who wanted to avoid the use of limits in the development of calculus.
While the standard objection to Lagrange’s treatment is that it cannot deal with all functions, it 
certainly does handle all functions likely to be encountered by students in Calculus I 
(Differential) and can serve as a basis from which to develop the Bolzano-Cauchy-Weirstrass 
treatment of limits that is nowadays de rigueur in, or at least underlies, “elementary” calculus 
texts. What it cannot deal with is only the kind of esoteric functions encountered by research 
mathematicians.
The details of how Lagrange’s approach achieves this is beyond the scope of this paper but an 
important fact to keep in mind in terms of the sequence sketched here is that it is based solely 
on the use of something called polynomial approximations. (More about this below.)

Description Of The Arithmetic-Algebra Course
Because of the work done for Differential Calculus I and Differential Calculus II, the 
contents of the Algebraic Functions course and of the Transcendental Functions course are 
already well specified and therefore the contents of the Arithmetic-Algebra course are fairly 
well specified as being exactly, no more, no less, what is needed for the Algebraic Functions 
and Transcendental Functions courses.
In fact, the package Reasonable Basic Algebra already contains a large part of what is needed, 
namely

• Elementary equations and “inequations”,
• Laurent polynomials i.e. polynomials that can include negative powers.

What is not clear is exactly how much to do with these contents to ensure a “profound 
understanding”—in the sense of Liping Ma’s “profound understanding of fundamental 
mathematics“. So, here, some experimentation would certainly be necessary.

In any case, what is missing from the Reasonable Basic Algebra package, yet is absolutely 
necessary for a profound understanding of Algebraic Functionsand Transcendental 
Functions, is a profound understanding of three more concepts:

• Decimal Numbers



• Functions
• Approximations

While the first part of the Reasonable Basic Algebra package does deal with numbers, it does 
so mostly with counting numbers, plain and signed. But, even though decimal numbers are 
constantly used in Part 2 and 3, for lack of time, the Reasonable Basic Algebra package could 
not discuss decimal numbers per se and had to take for granted their profound understanding. 
This of course precluded any discussion of Approximations.

Similarly, for lack of time, functions are not really introduced in the Reasonable Basic Algebra 
package even though, without saying it, operations are introduced as functions, that is, for 
instance, as adding 2 to 3 which can be visualized as

$latex 3 \xrightarrow{\hspace{2mm} +2\hspace{2mm}}\;5$

as opposed to adding 3 and 2 which can be visualized as

$latex 3, 2 \xrightarrow{\hspace{2mm} +\hspace{2mm}}\;5$

The distinction may appear overly subtle but, in fact, it facilitates considerably the 
understanding of how we work with numbers. For instance,

• We can then say that subtracting 2 “undoes” adding 2; visually:
$LATEX 3 \xrightarrow{\hspace{2mm} +2\hspace{2mm}}5 
\xrightarrow{\hspace{2mm} -2\hspace{2mm}}3$ 

• Similarly, the equation x + 2 = 5 can be understood as the question “to what number 
should we add 2 to get 5?”. Visually:
$latex x \xrightarrow{\hspace{2mm} +2\hspace{2mm}}5$ 

Had functions been actually introduced, the above question would then have been recast as:

For which input(s), if any, does the function whose input-output rule is

$latex x \xrightarrow{\hspace{2mm} JILL\hspace{2mm}}JILL(x) = x+2$

return the output 5?

The latter is of course cumbersome but it does familiarize the students with a way to look at 
things that is crucial in Algebraic Functions where we might ask, for instance,

For which input(s), if any, does the function whose input-output rule is

$latex x\xrightarrow{\hspace{2mm}QUAD\hspace{2mm}}QUAD(x) = -3x^{2}+5x-7$

return the output −23?

which leads naturally to the quadratic equation



[pmath] -3x^2+5x-7= -23[/pmath]

which can then be solved simply by counting inputs from the vertex.

Thus, the Arithmetic-Algebra course should be designed something as follows:

1. Introduce functions as the mathematical version of real-world input-output devices.
2. Introduce counting numbers, plain and signed, essentially along the lines of the 

Reasonable Basic Algebra package but now in the context, and with the full aid, of 
functions. In particular, plotting functions when the data set consists of signed counting 
numbers would go a long way towards the students’ familiarization with these.

3. Introduce decimal numbers with, immediately, the then necessary concept of 
approximation. For instance, while the question
For which input(s), if any, does the function whose input-output rule is
$latex x \xrightarrow{\hspace{2mm} DIL\hspace{2mm}}DIL(x) = 3x$ 

return the output 12? 

has the solution 4, the question
For which input(s), if any, does the function whose input-output rule is
$latex x \xrightarrow{\hspace{2mm} DIL\hspace{2mm}}DIL(x) = 3x$ 

return the output 12? 

does not admit of any exact decimal solution. However, we may say that any of the 
following
4 + [...]
4.3 + [...]
4.33 + [...]
4.333 + [...]

where [...] is to be read as “something too small to matter in the current situation” is a 
solution.
Which approximation we will choose will depend of course on the actual situation and 
so, in the meantime, we will say that the solution is
$latex \dfrac{13}{4}$ 

which is then read as “code” for setting up the division of 4 into 13 with the decision as 
to where to stop the division left to when we know what the actual situation requires.

4. Very little in the investigation of equations and inequations in Part 2 of the Reasonable 
Basic Algebra package would have to be modified to take full advantage of the above.

5. In fact, and more generally, once the sequence is a given, there would be no need to 
keep the contents in the particular courses described above and, presumably, one could 
vastly improve the learning curve by bringing in the contents on an “as needed” basis.It 
is for instance quite probable that the study of affine functions currently in the 
Algebraic Functions course could occur in the Arithmetic-Algebra course where 



affine equations are already dealt while leaving most of the study of approximations for 
the investigation of quadratic functions and cubic functions in the Algebraic Functions 
course where it is really needed. (Of course, the courses would then have to be renamed 
accordingly.)

Rationale
Some explanation as to why the contents have to be something like what was described above 
is probably in order.

1. The students entering Developmental Mathematics courses are “damaged” in the 
sense that they want only to be shown “how to do” the problems understood to appear 
on the exam. When reminded that “show and tell, drill and test” is precisely what got 
them into Developmental Mathematics courses, many even rise to the defense of their 
school/teachers and say that this is only because “they were never good in math”.

2. Compounding the problem is the fact that all commercially available textbooks are 
memory based and that, to facilitate memorization, the subject matter is atomized into 
“topics” that are then presented independently of each other. All connective tissues have 
been removed and, as a result, nothing can make sense anymore and no build-up can 
take place. Indeed, typically, instructors deplore that the students cannot remember the 
simplest things past the test.

3. Given these circumstances, such a “fast track” as described above would seem utterly 
improbable. The point, though, is that the content architecture sketched above is 
extremely efficient in that everything serves to support all that follows and thus fosters 
an environment in which the students are able and begin to see that things mathematical 
are the way they are, not because someone or some book says so, but because of the 
way they connect to each other so that it makes sense that they should be the way they 
are.
For example, consider the number 2345.67. In the Arithmetic-Algebra course, it 
initially stands as a shorthand for
$latex 2\cdot10^{+3} + 3\cdot10^{+2} + 4\cdot10^{+1} + 5\cdot10^{0} + 
6\cdot10^{-1} + 7\cdot10^{-2}$ 

to represent
$latex 2 Clevelands \& 3 Franklins \& 4 Hamiltons \& 5 Wahingtons \& 6 Dimes \& 7 
Cents$ 

The exponents are “code” for the number of 0s to be placed after the 1 when the 
exponent is + or to be placed before the 1 when the exponent is -:
$latex \begin{align*}
2345.67
&=2\cdot1000. + 3\cdot100. + 4\cdot10. + 5\cdot1. + 6\cdot0.1 + 7\cdot0.01
\\
&= 2000. + 300. + 40. + 5. + 0.6 + 0.07
\end{align*} $
With the details that are quite necessary but omitted here, the above makes complete 
sense to the students. Most important is that the concept of multiplication is not required 



at that point and that this is all that is needed to start the development of arithmetic (In 
the above, the symbol + should be read as “and”).
For instance, the above is enough to discuss why, depending on the situation, we can 
write
$latex \begin{align*}
2345.67
&= 2000 + [...]
\\
&= 2300 + [...]
\\
&= 2340 + [...]
\\
&= 2345 + [...]
\\
&= 2345.6 + [...]
\end{align*}
$
But then, once we have introduced multiplication, we realize that, say,

$latex 2 · 10^{+3}$ 

can be read as

2 multiplied by 3 copies of 10 

and

$latex 2 · 10^{-3}$ 

can be read as

2 divided by 3 copies of 10 

From there, it is an easy transition to reading
$latex 2 · x^{+3}$ 

as
2 multiplied by 3 copies of x 

and reading
$latex 2 · x^{-3}$ 

as
2 divided by 3 copies of x 



And then, we can see why, when x stands for a large number, we can write, depending 
on the situation,

\begin{align*}
\hspace{-7mm}2x^{+3}+3x^{+2}+4x^{+1}+5x^{0}+6x^{-1}+7x^{-2}
&=2x^{3} + [...]
\\
&=2x^{+3}+3x^{+2} + [...]
\\
&=2x^{+3}+3x^{+2} +4x^{+1} +[...]
\\
&=2x^{+3}+3x^{+2} +4x^{+1}+5x^{0} +[...]
\\
&=2x^{+3}+3x^{+2} +4x^{+1}+5x^{0}+6x^{-1} +[...]
\end{align*} 

A profound understanding of decimal numbers and of how they are approximated is 
absolutely crucial to the profound understanding of functions afforded by Lagrange’s 
viewpoint because not only are polynomial functions approximated essentially in the 
same manner as decimal numbers but polynomial functions in fact serve to approximate 
all the functions normally encountered in calculus in exactly the same manner that 
decimal numbers serve to approximate all numbers, for instance √2, π, e, the golden 
ratio, etc. 

4. Eventually, as the students’s understanding deepens, the attitude mentioned above 
begins to change and many students begin to be more willing to take the time to 
consider a question, what it means and how to cope with it, one way or the other, and 
then to take whatever more time it takes to get a result and/or to make a case for 
whatever result they have come to.
Incidentally, the amount of time students are willing to stay on a given question is an 
extremely good indicator of their progress in the direction of thinking for themselves.
Significantly, the questions to the instructor get to be less and less about whether they 
“got it wrong” and more and more about where they made the wrong turn.

5. However, the problem is that this change in attitude starts being noticeable only about 
two thirds of the way down the first course. And of course, if the second course is 
“standard”, everything goes back to square one: “teach me, show me”. In other words, 
the convalescence cannot be expected to take place within a single semester.

6. Some students, though, have already reached a “denial” stage where, against all 
evidence, continue to say that they will just memorize and pass the course.

Practical Considerations
While a content architecture such as the one sketched above is necessary, it is unfortunately not 
sufficient to ensure acceptable retention and success rates.

1. Students need to be able to read (and write) mathematical explanations and this is far 
from being initially the case. It is thus necessary to link the sections of the Arithmetic-
Algebra course with sections of a Developmental English Reading course in which 



the texts assigned for reading are those used in the Arithmetic- Algebra course: 
Textbook and Review DISCUSSIONS.
The link was tried once in my school and the instructor who had taught the Remedial 
English Reading course later wrote that “The students that stayed to the end also 
appreciated [the approach] whether they passed or not. If we pursue another link, the 
English teacher should definitely read the math text with the students. Unfortunately, 
because I had my own reading to do, we did not read the math in English class as we 
should have done.“

2. Students need to have the time necessary to discover and experience what is for them a 
completely new modus operandi, namely “thinking” as opposed to memorizing.
There should therefore be a “study period”, after each class, in a manner of a lab, to 
ensure that the students will have the necessary time to do the homeworks provided in 
the package while reading the Textbook and the Review DISCUSSION. (See for 
example the Reasonable Basic Algebra package). Just as with physics or chemistry 
labs, an instructor should be present as a “resource”.

3. There should be as much continuity as possible:
1. The Arithmetic-Algebra course should be offered only in the Fall with the 

Algebraic Functions course offered in the Spring and the Transcendental 
Functions course offered in the following Fall (or in the Summer but only in a 
fourteen week course.)

2. The instructor ought to be able to follow her/his students from one course to the 
next throughout the entire sequence—except of course when students need to 
repeat a class.

3. Some “contract” should be passed between entering students and the school to 
ensure:
▪ That the students will attend classes and study periods,
▪ That the school will offer the subsequent courses on schedule,
▪ That the school will give the students a specific number of credits upon 

completion of the sequence,
▪ That the school will have seen to it that the sequence transfers 

appropriately in four-year schools.
4. Some screening would seem to be necessary but should absolutely not be done 

on the basis of “knowledge” and only to determine the likelihood that the 
student’s commitment is realistic and seriously understood.
There is a subtle difference between students testing into Developmental 
Arithmetic and students testing into Developmental Algebra, although not 
entirely in favor of the Developmental Algebra students. So, although it seems 
a priori safer to start such a program with students testing into Developmental 
Algebra, once a screening has been found to successfully predict the students’ 
level of commitment, there does not remain much reason for not accepting in the 
program students testing into Developmental Arithmetic so that, eventually, 
the distinction could be dispensed with entirely.
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